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GENERALIZED NEWTON-PUISEUX THEORY 
AND HENSEL'S LEMMA IN C[[JC, yH 

TZEE-CHAR KUO 

The Newton polygon and the Newton-Puiseux algorithm ([3], p. 370, [8], 
p. 98), and their generalizations, serve as a powerful tool for analysing the 
singularities of a given function. Yet experts know how difficult it is to keep track 
of them when one, or several, blowing-ups are applied. Thus many interesting 
theorems are stated under the strong, rather undesirable, assumption that the 
Newton faces are non-degenerate. 

In this paper, we introduce a method which is parallel to the classical Newton-
Puiseux theory, yet avoids blowing-ups and fractional power series, except in 
the proofs. 

Given an irreducible curve germ, r , at O E C2, and given f(x,y), we define, 
in Section 2, the notion of Taylor's expansion of / at T. When T is smooth, 
this reduces to the usual Taylor expansion at O. When T is singular, there is a 
succession of blowing-ups, /?, which desingularizes T to a curve P , having a 
point O* corresponding to O. Then, morally speaking, the Taylor expansion at 
r serves as a "remote control" on the behavior offo/3 near O*. 

The notion of the Newton polygon, and that of the associated polynomial 
equation of an edge ([8], p. 100), can likewise be generalised. We then have the 
Generalised Hensel's Lemma which gives a necessary and sufficient condition 
for reducibility. (Compare [6].) 

Then, in Section 5, we present an algorithm for factoring/ into its irreducible 
components, of which the classical Newton-Puiseux algorithm can be considered 
as a special case. 

A corner stone of this work is a complete list of irreducible curve germs and 
their defining equations, given in Section 1, which is indexed on the characteristic 
sequences: one equation (involving some parameters) for each isotopy class. (A 
different listing is given in [2].) 

The defining equation of an irreducible curve germ, T, also gives rise, in a 
natural manner, to what we call the T-adic expansion base in Section 1. This 
is a special case of the G-adic expansion base defined by Abhyankar and Moh 
([1], p. 29). The fact that the T-adic base is tied up with an irreducible curve 
germ (rather than being a general base) has strong implications which are vital 
for the results. 

The author would like to thank S. Abhyankar, Pierre Milman and Mutsuo 
Oka for stimulating conversations during their visits in Sydney; without Pierre's 
encouragement this paper would not have been written up. 
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1. General equation of an irreducible curve germ. Consider a finite, or 
infinte, sequence of pairs of positive integers 

<£ = {(do, no), Wi,ni ) , . . . , (d5,ns),...} 

where do = no = 1 < dz, 4 , w,- are relatively prime, and 

n\ ri2 ns 

d\ d\di d\ • • • ds 

The following shorthand will be used throughout this paper: 

Yl' 

A- = d0 • • • di\pi = -^-;i/,-+i = /7/+i - A ; / ^ 0. 

We may call /?; the Puiseux exponents, and V{ the Newton exponents. 
Gives s !â 1, let us write ^ for the truncated sequence 

% = {(di ,n i ) , . . . , (d 5 ,^)} . 

We shall determine the general equation of an irreducible curve germ, Ts, having 
% as its characteristic sequence. Such a curve germ will be called a (Ps -curve 
(germ). By a ^Po-curve we shall mean the germ of a smooth curve. 

Now, let T be given, satisfying (1). Consider an open subset of C2 with a co­
ordinate system {*, v}. A sequence of monic polynomials in x, with coefficients 
in CŒy], 

G_i = v,Go, . . . , (7$, . . . , 

is defined recursively as follows. First, take any complex number c$ and define 

go =x-c0G-UGo = go + 0i(G_i) 

where a\ is any formal power series with 0(a\) > 1. Clearly, Go = 0 is the 
general equation of a îPo-curve, To, transverse to the jc-axis. 

Asssume, by induction, that Tt and its defining equation G/ = 0, for 0 ^ / ^ 
s — 1, have been defined, and that a rational number w(r;), called the weight 
of G/, has been defined for each / è s — 2, where w(G_i) = 1. We then define 
w(Gs-\) by the formula 

5 - 1 

(2) w(Gs-X) = Y,(di - l)w(Gi-i) +Ps. 
i=0 

As an easy consequence, we have 

(3) w(G,_i) = ds-iw(Gs-2) + y s > ds-iw(Gs-2)-
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Definition . A Ys-\-adic monomial, or simply a Ts-\-monomial, is an expres­
sion of the form cGe~{Gl0...Ge;~\, where 

c G C , ^ - i à 0,es-i ^ 0,di+i - 1 ^ ex^ 0,/ = 0 , . . . , s - 2. 

A Weier strass Ys-\-polynomial is a monic polynomial in Gs-\ of the form 

G^ 1 +a 1 (G_ 1 , . . . ,G,_ 2 )G^ 1
1 +- . .+^(G_ 1 , . . . ,G 5 _ 2 ) 

which is also a series (i.e., a finite, or infinite, sum) of T5_i-monomials. 

LEMMA 1. Consider N/Ds, where iVGZ+ is given. 
(A) There exists a unique (s + \)-tuple (e-\, eo, . . . , es-\) of integers such that 

N /Ds = e-i + e0w(G0) + • • • + es-\w(Gs-\) 

where di+\ — 1 ^ ex 2̂  0 for 0 ^ i ^ s — \. (We merely have e-\ G Z.) 
(#) In case N/Ds — dsw(Gs-\), we then have e-\ > ps > 0 and es-\ = 0. 

(In fact, es-\ — 0 if and only if N is divisible by ds.) 
(C) In case N jDs > dsw(Gs-\), we still have e-\ > ps > 0. 

The proof, of arithmetic nature, is given at the end of the section. 
Now we define Ts and Gs. Choose (£_i,.. . ,es-\), with es-\ — 0, according 

to (B). Take a complex number cs ^ 0, and set 

A = G*. 1 -c I Ci- I 'G?. . .G^- | . 

Then take Gs to be a Weierstrass I V i -polynomial of the form 

(4) G 5 =^+a 1 (G_ i , . . . ,G J _ 2 )G^V + ---+^1(G_i, . . . ,G5_2) 

with 0(aj)>MGs-\), l^j^ds. 
Here 0(aj) is the order of q when weights are assigned to G; according to 

(2). 

Attention. When IP is a finite sequence terminating at (dSJns), the above 
construction finishes at Gs\ and then w(Gs) is not defined. We call {G_i, . . . , Gs} 
a Ts-adic expansion base in C[[x,_y]]. 

THEOREM 1. The general equation of a tPs-curve, Ts, is Gs = 0. 

That is to say, for any choice of Q and q in the above construction, the result­
ing equation Gs = 0 defines a (Ps -curve; and conversely, the defining equation 
of any Ts -curve can be obtained in this way, up to a unit factor and a rotation 
of the coordinate axis. 

Note. When we take all q — 0, the resulting gs may be called the "sim­
plest" polynomial defining a % -curve. However, in general, its degree is not the 
smallest. For example, both g\ — x2—y7 and (x—y2)2—yx3 define a (2,7)-curve. 
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Proof of Lemma 1. The integers 

ns,dsns-\,dsds-\ns-2,... ,ds • -d2nuds --d\ 

have no common factor > 1. Hence we can find integers £/, 

N/Ds = Es-ips + • • -+E0p\+E-u 

where we can assume 0 ^ Et Û dt+\ — 1 for / = 0 , . . . , s — 1. 
By a repeated application of (2), we shall have 

(5) N/Ds = es-iw(Gs-i) + • • • + e0w(G0) + e_b 

where e-\ G Z, di+\ — 1 ^ e/ ^ 0 for / = 0 , . . . , .s — 1. 
Since w(G[) is of the form N/Di+\, but not of the form N/Dt, uniqueness 

follows, completing the proof of (A). 
For (B), note that N must be divisible by ds in this case. Hence Es-\ = es-\ = 

0. Using (2), (5) and the fact that ds > 1, we then have 

5 - 1 

e-i > w(Gs-i) - Y^(di ~ l)w(Gi_i) =ps>0. 

The proof of (C) is the same. 

Examples, (x2 — v3)2 — v7 is not of the form g2, hence reducible; (x2 — v3)2— 
y5x is of the form g2, having characteristic sequence {(2, 3), (2, 7)}, which is 
shared by the Eisenbud-Neumann example ([4] p. 58) x4 — 2y3x2 — Aa2y5x+ 
y6 — a4y7 = (x2 — y3)2 — 4a2y5x — cây1. 

2. Generalized Taylor expansion, Newton polygon and Hensel's lemma. 
Let T be a given &s-curve, {G_i = y, Go,. . . , Gs} a T-adic expansion base as 
constructed in Section 1, where Gs — 0 defines T. This base will be fixed in the 
rest of this paper. Note that the degree of Gt (in JC) divides that of Gi+\. Hence 
it is easy to see that a given f(x,y) G Cflx,y]] can be expressed, uniquely, as a 
series of T-monomials. 

(6) f{x, y) = J2 c«-. '•••^)G-i Go° • • •G? • 

We call (6) the Taylor expansion of / at T. (This notion readily generalizes to 
the «-variable case.) 

In a coordinate plane, let us plot a dot, called a Newton dot, at the point (M, V) 
where 

5 - 1 

u = es,v= ^eMGi), 
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for every non-zero term in (6). 

Definition. The Newton Polygon off with respect to T is the boundary of 
the convex hull generated by the quadrants 

(M, V) + {0, /) <G R2 : s > 0, t^ 0}, 

for all Newton dots («, v). 

Let us now choose an arbitrary angle 9 for which 

tan0 ^ dsw(Gs-\). 

We are merely interested in the case when tan# is rational. Let it be written as 

n 
(7) tan0 = , n,d relatively prime, d ^ 1. 

Dsd 
We like to collect the Newton dots along a given line with slope — tan 9. The 

equation of such a line is 

(8) Lw : u tan 9 + v = w, w a constant. 

Let m denote the smallest value of w for which Lm contains at least one 
Newton dot. Amongst all the Newton dots on Lm, let (/is,]C/=-i /^ (G, ) ) be 
the one with maximal «-coordinate fis. 

Dividing /2S by d yields. 

(9) fis=qd + r 0 ̂  r < d. 

It is then quite clear that any Newton dot on Lm can only be one of the points 
(wy-, Vy), 0 ^ j ^ q, where 

(10) Uj = ^ —yd, Vj — m — Uj tan 0. 

Using Lemma 1, (B), (C), we can choose a unique (s + l)-tuple (/z_i,..., 

(11) dtm9= ^hMGi) 

where /z_i > 0,dz+i — 1 ^ hi ^ 0, / = 0, . . . , s — 1. The above (10) can be 
rewritten as 

wy = ns -jd, vj = 5^(/X| +jhi)w{Gi). 
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Notation. A = G^1 • • • Gh;z[,77 = G^1 • • • G £ ï t i , 0 û j £ q. 

The total exponent of G; in r7 is /x, +jht, which may be ^ di+\ for some /. 
When this happens, we ought to expand r7 into its own Taylor expansion at T. 
The following lemma gives information on the Newton dots. 

More generally, let r = Gv~{ . . . Gv
s
s~{ Gf be given. Let us write 

v* = ^2 viw(Gt)iw* = dsw(Gs-\)u*+v*. 

LEMMA 2. 7Vie Taylor expansion of r has its Newton dots lying in the region 

R(u*, v*) = {(M, v) : d5w(G,_i)w + v è w > â w*, v è 0}. 

There /s definitely a Newton dot at the corner point (M*, V*); //" v^-i ^ dv — 1 
f/ie« f/iere /s «o other dot on the line L** : dsw{Gs-\)u + v = w*. 

The proof is by induction, the hypothesis being 
(Ik). The above assertion is true for all r such that 

0 ^ v, ^ 4+1 - 1, for it + 1 û i S s - 1. 

(No restriction onv / , - 1 ^ / ^ £.) 
Of course, 7_i is true. 
Assuming /*,£ < s — 1, to prove /*+i, we use induction again: 
(AN). The assertion holds for all r such that 

0 ^ v*+1 g i V , 0 ^ v/ ^d / + i - 1 , ^ + 2 ^ / ^ ^ - L 

When N ^ *4+2 — l?^yv is already true. 
Assuming Au,N + 1 ^ <i+2, 1° prove A/v+i, we take a r with v̂ +i = N + 1 

and use the formula 

dk+2 

G<tX = Gk+2 + c^Gi- / • • • G? - J ] fly-(G_!,..., G*)G&+p 
y=i 

which is just the définition of G^+2, (4), to reduce T, yielding 

where T*1* is T with Gv£\ and Ĝ +
+
2
2 replaced by Gv£{~dk+2 and G£ | + 1 respectively; 

the meaning of the a1 s is obvious. 
By the induction hypothesis, the Newton dots of a(1) lie in R(u*,v*), and 

(w*, v*) is one of the dots. 
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Similarly, the Newton dots of aj [ ) lie in the region R(u*, v*) where 

vj = v* - dk+2w(Gk+l) + 0(aj) + (4+2 -y'MG*+1). 

From the definition of Gk+2 we know v* > v*. Hence the Newton dots of crĵ  
lie above the line L£*. 

It remains to consider i^l). The argument is divided into three cases. (A): 
k + 1 < s - 1, vk+2 + 1 = 4+3 - 1, (B): £ + 1 < s - 1, V£+2 + 1 = 4+3, and (C): 
ifc + 1 = $ - 1 . 

For (A), the induction hypothesis applies to r ^ . By (3), with s — 1 = A: + 2, 
the Newton dots of ^l) lie above the line L**. 

For (C), the induction hypothesis still applies. The Newton dots of T*^ are 
contained in R(u* + 1, v* — dsw(Gs-\)). The proof is also finished. 

When (B) happens, the reduction process can be iterated on Gk+2, yielding 

The Newton dots of CT(2) and crj2) lie above L**, causing no trouble. As for T^2), 
again the argument is divided into cases (A), (B) and (C). If (B) happens, the 
reduction continues. 

But (B) can not happen more than s — k times. Hence Lemma 2 is proved. 
Now, take a term 7/ in (6) which is represented by (w/,vy) on 1^. Using 

Lemma 2, there is a unique constant aj ^ 0 such that 7/ appears as a term in 
the Taylor expansion of ajTjGu

s
J. 

In case (wy, vj) does not represent a non-zero term in (6), define aj — 0. 

Definition. Given the Taylor expansion (6). The polynomial associated to the 
given angle B is 

(12) w(z) = zr[a0z
q + '- + aq] 

where q, r, are defined in (9). 

We know ao ^ 0. There is another aj ^ 0 if and only if the Newton Polygon 
has an edge E with BE = 8. Here BE denotes the angle between E and the 
negative «-direction. 

Given E, the polynomial (fEe(
z) wiU be written simply as <PE(Z). We also 

write 

®E(Z) = aozq + - • • + aq. 

Illustrative Examples. (A) Consider /(je, y ) = (x2 — 2y3)2 +y7, we have Go = 
JC,GI = j t2-2y3 ,w(G0) = 3/2; tan0 = 7 / 2 , d = l ,? = 2,r = 0,/z_i =2,/*0 = 
1, A = y2x, A2 = 2y7 +y4(x2 — 2y3). Hence ao = l,tfi = 0, «2 = 1/2, ^ ( z ) = 
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z2 +1/2 which has two distinct roots. By the Generalized HenseFs Lemma (see 
below), / is reducible. 

(B). Consider f(x,y) = (x2 - 2y3)2 -xy5. Again G0 = x,Gx = x2 - 2y3, 
while tan0 = 13/4,d = 2,q = l , r = O,dtan0 = 13/2,h-\ = 5,/z0 = 1,A = 
j 5 x and <PE(Z) = Z — 1, which has only one root. We know, from Section 1, that 
/ is irreducible. 

Definition. An edge, £, of the Newton Polygon of (6) is relevant if 

tm9E ^dsw(Gs-X). 

Call E strictly relevant if this is a strict inequality. 

When T is defined by x — 0, E is relevant (tan0£ ^ 1) if and only if the 
Puiseux roots arising from E have order è 1. 

THEOREM 2 (Generalized Hensel's Lemma). A formal power series f{x,y), 
having no multiple factors, is reducible if and only if there exists an irreducible 
curve germ, Y, with respect to which the Newton Polygon off has a relevant 
edge, E, whose associated polynomial equation (£E(Z) — 0 has two, or more, 
distinct roots. In this case, given a factorization in C[z] : 

(13) <PE(Z) = 77(zX(z), 77, £ being relatively prime, 

there is a corresponding factorization in C[[x,y]] : 

(14) f(x,y) = h(x,y)k(x,y) 

such that rj, £ are polynomials associated to BE for /z, k respectively. 

As a corollary, we derive the following interesting result of M. Oka, which is 
contained implictly in his paper [7]. 

First, observe that if 0£(z) = 0 has no multiple non-zero roots, then each 
non-zero root gives rise to an irreducible factor of/; and different roots give 
rise to different irreducible factors. Call E non-degenerate in this case. 

Now, consider the Newton Polygon of / in the usual sense. The number of 
integral (lattice) points on a given edge E equals the number of non-zero roots 
minus 1. 

COROLLARY (M. Oka). Suppose the Newton Polygon of f has a vertex on 
each coordinate axis, and every edge is non-degenerate, then the number of 
irreducible factors off equals N(f) — 1, where N(f) denotes the number of 
integral points on the Newton Polygon. Moreover, these factors are all different. 

3. Proof of theorem 1. Let us consider the following two induction hypoth­
esis: 
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(Is). Gi = 0 is the general equation of a ^-curve 0 ^ / ^ s. 
(lls). Fix any /, 1 ^ iSI s. Take a Puiseux root, x — A(y), of G, = 0. Let 

A (y) denote the series which is AO) omitting all terms of degree ^ /?,. Then 
ÂO) is a Puiseux root of G7-_i = 0. 

We have seen that (IQ) is true; (IIQ) says nothing, hence is true. Note that all 
Puiseux roots of an irreducible curve are conjugate, hence Qls) is independent 
of the choice of A. 

A number of important consequences can be derived from the above hypoth­
esis. 

Consider a given / ^ 1. There are Dt Puiseux roots of G/ = 0; let them be 
denoted by Ai, . . . , Am, m — £)/. We define 

m 

/(G,O = £0(A;OO-A,OO). 

(This number is closely related to the self-linking number of the knot, see [5], 
p. 301.) 

We also define /(G0) = 0. 
Since the A's are conjugate, /(G/) is well defined. 
An examination on the tree-models of G/ and G/_i ([5], p. 308), superposed 

according to (II5), leads to the following identity: 

/(G/) +Pi = dlPl + diKGi-ù, OSi^s, 

which can be rewritten as 

(15) /(G/) = d //(G I-_,)+p /(4--l). 

The details of the proof is omitted. 
On the other hand, combining (3), (15) and an easy induction yields 

w(Gi)-I(Gi)=pi+u O^i^s. 

Let us take a Puiseux root, a(y), of Gs = 0. Then consider cr(y) + ryPs, where 
r is an indeterminant. An examination of the superposed tree-models of Gs and 
Gt leads to 

(16) 0(Gs{a(y)+Tf-,y)) = l(Gs)+ps 

0(Gi(cr(y) + Tf',y)) = KGi)+pi+l = w(Gt), O^i^s-h 

In fact, the following stronger formulae hold: 

Gs(a(y) + if', y) = <rf> [ay1™ + Rs] 
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where the constants a ^ 0, b[ ^ 0 are independent of r, and where /?/, 0 ^ / Û s, 
are power series in yxlD\ with coefficients in C[r], such that 

0y(tf5) ^ l(Gs),Oym ^ w(G/),0 ^ / ^ - l . 

Moreover, when setting r = 0, these become strict inequalities. 
We are now ready to find the Puiseux roots r = r(y) of the equation 

GJ+i(<7(y) + 7y\;y) = 0, 

which can be rewritten in the form 

n*? / ^ + 1 + • • • = 0. ! **V' + 1 - cs+l j 

There are ds+\ Puiseux roots of the form 

r = royVs+l + • • • (power series in yx'Ds+x) 

where TO are the roots of 

a^z^-c^Hb^ 0. 

These Puiseux roots are conjugate under the group of ds+\-th roots of unity. 
Hence, as we run through all Ds conjugate choices of a(Y), we will find alto­
gether Ds+\ Puiseux roots of Gs+\ = 0, which are all conjugate. Since Gs+\ is 
regular in x of order Ds+\, there is no other Puiseux root of order > 0. Hence 
Gs+\ — 0 is a Ts+\-curve. 

Now we prove the converse. Let a (Ps+\ -curve be given. We can assume it is 
not tangent to the jc-axis. Take one of its Puiseux roots 

A(y) = • • • + £ i / ' + • • - + bsf> + - • • + ft5+i/*+1 + • • •, ft,- ^ 0. 

Let a(y) denote X(y) with all terms of degree à ps+\ omitted. 
Using (I5), we can find an expansion base {G_i = y, Go, . . . , Gs} such that 

Gs — 0 defines a % -curve having a(y) as a root. 
Let us consider 

Hl{x,y) = Gi'«-aGe-{G*-'-Gi s-\ 

where a, et are determined as follows. 
We can (uniquely) choose values for et according to Lemma 1(B), so that 

e-\ > 0, e-i + e0w(G0) + • • • + es-\w(Gs-\) = ds+xw(Gs). 
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An examination of the superposed tree-model of G/, 0 ^ / ^ s, yields 

0(G/(A(y),y)) = w(Gl-), 0 ^ / ^ J . 

Hence we can uniquely choose a value a^ 0 so that 

0(//i(A(y),y)>*+ ,w(G J). 

Note that the left hand side is a number of the form N /Ds+\. 
Having defined H\, we then consider 

H2(x,y) = Hl(x,y)- aGez\ • • • Ge
s1{G? 

where a, e,- are determined as follows. 
Using a similar argument, we can find values et(ds+\ > es) and a ^ 0 such 

that 

0{H2{\{y)iy))> 0{Hx{\{y\y)\ 

where the left hand side is of the form N/Ds+\. 
The construction can be repeated recursively to yield a sequence {Hn} such 

that 

0(Hn(\(y),y)) > 0(//„_,) = 0(Hn-Hn-{), 

and these numbers are of the form N /Ds+\. 
Now define 

oo 

gs+\(x,y) = H\(x,y),Gs+\ = gs+\ + ^(Hn-Hn^x). 
n=l 

Then, clearly, A(y) is a root of G5+i = 0, and so are its Ds+\ conjugates. 
It follows that the given Ts+\ -curve must be defined by Gs+\ = 0, up to a unit 

factor, thus completing the proof of (I5+i), (HJ+i). 

4. Proof of theorem 2, the "if" part. Consider a relevant edge, E, and 
assume a factorization (13) exists. Take EQ to be the angle 9 in Section 2. 

Given a polynomial p(z), let p(zi,Z2) denote its homogenization, i.e., the 
homogeneous form having the same degree as p(z) with /?(z, 1) = p(z). 

Consider the line Lm defined by (8) for EQ. 

LEMMA 3. Let Lm denote the sum of terms in (6) whose Newton dots lie on 
Lm. Then 

(17) Lm = G^' • • • Gfr,1 Gr
s<S>E{Gi, A) 
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modulo T-monomials lying above Lm. 

Proof. In case tan#£ > dsw(Gs-\), (17) is an immediate consequence of 
Lemma 2, applied to each r7,0 ^ j ^ q. 

Now suppose tan#£ = dsw(Gs~\). This condition has strong implications. 
Since dsw(Gs-\) is a number of the form N/Ds-\, we must have: d — 1, AI is 
divisible by ds, and also hs-\ — 0 in (11), where n,d were defined in (7). 

Thus ni +jhi à dj+\ can happen only when / ^ s — 2. Hence, by the last part 
of Lemma 2, in the Taylor expansion of T/G?', (w7-, vy) is the only Newton dot on 
Lm, all other dots lie above it. 

Now, V . ajTjGu
s
] is just the right hand side of (17), proving Lemma 3. 

Given a number w, of the form N/Dsd,N G Z+, by an E-form of weight w 
we mean a sum of T-monomials lying on the line L^. 

LEMMA 4. Let L be a given E-form, say of weight w*. Suppose w* > m. Then 
there exist two E-forms Q and R, 

L = QGr
sOE(G^ A) + RG^ • • • G ^ 1 

modulo Y-monomials lying above L^*. 

Proof Lemma 3 can be applied to L also, giving 

modulo T-monomials lying above Lv*. (When L has only one term, OJ = 1.) 
Of course, we don't necessarily have //* ^ /i/. 
Now Gr* O^, GJO£ can be considered as weighted homogeneous forms in Gs 

and A, when Gs and A are given weights 1 and d respectively; both are monic 
in Gs. Let the former be divided by the latter, yielding 

(18) G5
r*0*(Gd

s , A) - QGr
s<5>E{Gr

s, A) + ÙJR 

where Q,R are weighted homogeneous forms in G5, A, 

jd + (degtf in Gs) = /i*,degtf in G, < /x5. 

Let us first consider the case tan0£ > dsw(Gs-\). 
Then we show that G^1 • • • G ^ 1 Â  is "divisible" by G^1 • • • G ^ 1 . 
Using the assumption w* — m > 0, we find 

(degfl) tanfe + ^ ( ^ * +A)w(G,) > /xs tan0E + ^ /x«w(G/) 

and hence 

^]( / i* +jhl)w(Gl) -Y^^MGi) > tanfe ^ dsw{Gs-\). 
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By Lemma 1(C), there exists (^_i,... ,es-\), 

(19) ]T(/i* + AMG,) - Y, t*MGi) = YJ eMG^ 

whence, by Lemma 2, 

(20) aG^ • • • Gfrl AJR = Ge~{ • • • Ge;z\ G^1 • • • G^ / R 

modulo T-monomials lying above L^*. Here a ^ 0 is a constant. 
Lemma 4 follows from (18) and (20) in this case. 
It remains to consider the case tan#£ = dsw(Gs-\). The proof is by induction 

on deg <!>£. 
Note that, as before, we must have d = 1, and r — 0. Hence O^ decomposes 

into a product of linear factors, possibly repeated. Let us take one of the factors, 
say Gs — cA, c £ C, and make the substitution Gs — Gs + cA in L and Lm. 

We shall write Gs simply as G5, abusing notations. 
Then O^ is divisable by Gs and can be written in the form 

0 £ = G , # ( G „ A ) . 

Again we choose et satisfying (19), and then, by Lemma 2, (20) holds modulo 
monomials on X *̂ which are divisible by Gs, and monomials lying above £»,*. 
It follows that L can be written in the form 

L = GSL* + G^* ..-G^r/M* 

modulo monomials above Lw*. 
An application of the induction hypothesis to G~lLm and L* completes the 

proof of Lemma 4. 
Now, a recursive application of Lemma 4 generates two sequences of £-forms 

{Qnh{Rn}> such that 

f(x,y) = [G^1 • • -G^r; + Ôi + g2 + • • - ] [ G ; 0 £ ( G ^ A) + /?! +/?2 + • • •], 

the weights being increasing in each factor. 
It remains to decompose the second factor, using (13). 
The factor zr in (12), if r ^ 1, is contained entirely in r](z) or in £(z), which 

are relatively prime. Let us assume it is in r](z), and write r](z) — zrrj(z). 
We then choose polynomials a(z), b(z), 

a{z)zrf]{z)^b{zX(z)^\. 

And, using a similar recursive argument as above, we can find two sequences 
of E-forms {A„}, {Bn} such that 

G ; O £ +R, +# 2 + • • • = [G;T)(G^, A ) + B { + • • •][((£?, A > + A , + • • • ] , 
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the weight being increasing in each factor. 
Finally, writing A and its powers in terms of r-monomials will yield the 

desired factorization (14). 

5. A factorization algorithm (generalized Newton-Puiseux algorithm). 
The proof of the "only if" part of Theorem 2 is also incorporated into the 
description of the algorithm. 

Let/(x,y) be given, having no multiple factors. We shall construct recursively 
a finite sequence 

r = r<0> r*1) r<ki) 
1 i — l i •> l i ? • • • i l i i 

of ^-curves, for / = 0 , . . . , N, where N is to be determined. Then, at the end, 
we shall either arrive at a TN-curve, which coincides with/ = 0, or else find 
that/ is reducible, the algorithm is then continued on each factor. 

Let D = 0(f) be the order of/. In case D = 1 / is equivalent to x; this case 
is trivial. 

Suppose D ^ 2. We can apply a linear transformation so that / becomes 
regular in x: 

/(jt, 0) = ÛQXD + higher order terms, a$ ^ 0. 

In case the initial form of/ has two, or more, distinct factors,/ is reducible, by 
the well-known Hensel's Lemma. Otherwise, we can perform a linear transfor­
mation, if necessary, so that xD is the initial form. 

Let us take r 0 = r[)0) to be the curve defined by x = 0. Let G-\ = y, Go = x. 
Then consider the Newton Polygon of/ (with respect to To). There must be a 
compact edge, which is also strictly relevant, having (Z),0) as a vertex. Since 
otherwise / would be divisible by xD, a contradiction. 

Now, assume Y^\s ^ 0 J ^ 0, have been defined, for which the following 
holds: The Newton Polygon of/ with respect to T*p has a compact, strictly 
relevant, edge, £, having (D/Ds,0) as a vertex. 

Let {G_i = y , . . . , Gs} denote the T^-adic expansion base. (Strictly speaking, 
since this base depends also on j , we ought to write G^ instead of G; here.) 
There are four cases to consider. 

Terminating Case: D/Ds — 1. 
Reducible Case: D/Ds > 1, but the other vertex of E is not on the v-axis. 
Stable Case: The other vertex lies on the v-axis, d — 1. 
Unstable Case: The other vertex lies on the v-axis, d > 1. 
When D/Ds — 1, the curve/ = 0 coincides with a % -curve defined by an 

equation of the form Gs + #i(G_i, . . . , Gs-\) = 0. There is nothing more to do. 
In the second case, the associated polynomial equation, cpE = 0, has 0 as a 

root, and at least one non-zero root, regardless of whether d = 1 or d > 1 in 
(7). By the "if" part, proved in the last section, / is reducible; the algorithm is 
then continued on each factor of (14). 



GENERALIZED NEWTON-PUISEUX THEORY 1115 

Now consider the Stable Case. When d = 1, ipE has the form 

<pE(z) = a0z
D + a{z

D~l +--+aD. 

An application of the Shreedharacharya-Tschirnhausen transformation z — z — 
a\/Dao turns (fE

 m t 0 a polynomial of the form 

a0z
D +a2z

D~2 + --- + aD. 

Notice that (fE(z) = 0 has no distinct roots if and only if a]• — 0 for 2 ^ j S D. 
(The author is indebted to S. Abhyankar for pointing out to him this simple, but 
important, fact.) 

In case ipE — 0 has distinct roots, / is reducible, the algorithm is continued 
on each factor. Otherwise, define 

G s = Gs-(a{/Da0)A 

and let T^+l) be the % -curve defined by Gs = 0. The Newton Polygon of/ with 
respect to T^+1) must have a compact edge, E\ having (D/Ds,0) as a vertex, 
and 

tan 0£/ > tan 9E. 

It follows that E' is strictly relevant. 
Finally, consider the Unstable Case. Again, if <pE has distinct roots, / will 

be reducible. Otherwise, we must have r = 0 in (12). Again, the transformation 
z — z — a\/Dao reduces ipE to a$zq'. We then set 

Gs+i = Gd
s - (ai/Da0)AJds+i = rf,«J+i = /i, 

and let T̂ +i be the ^+i-curve defined by Gs+\ = 0. The Newton Polygon of / 
with respect to r5+i has a vertex at (D/Ds+\,0). 

When D /Ds+\ = 1, this reduces to the Terminating Case. When D/Ds+\ > 1, 
we have one of the three remaining cases. 

The Unstable Case can not occur infinitely many times, since D/Ds keeps 
dropping. The Stable Case can not either, for if it did, / would have a factor of 
the form GDJD\D/Dk > 1, which is a contradiction. 

After a finite number of such applications, we shall arrive at a complete 
decomposition off into irreducible factors, without resorting to fractional power 
series. 

Example ([4], p. 58). For / = x4 — 2y3x2 + y6 — 4a2y5x — cây1\a ^ 0, we 
find, following the algorithm, that G_i = y, G0 = JC, G\ — x2 — y3, and, finally, 
G2 = C*2 — .y3)2 — 4<22y5x. Hence/ is irreducible. 
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Following the algorithm, one can decide effectively whether f(x,y) is re­
ducible or not, i.e., the algorithm is a computer programming, at least when/ 
is a polynomial. 

If case / is known to be reducible, to find its irreducible factors, one has to 
solve the associated polynomial equations cpE = 0. Apart from this, the process 
is also effective. 

The classical Newton-Puiseux algorithm for finding the fractional power series 
roots can be considered as a special case of the above, when the fractional powers 
of y are introduced one by one. We omit the details. 
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